Matrix
Matrix is used in various operations in statistics and analytics. utilict supports matrices with following operations.
Matrix Addition
Adds two matrices and will return the result. The order of both matrices must be same for addition.
Usage
matrixAddition(
[
[2, 4, 3],
[5, 7, 8],
[9, 6, 7]
],
[
[3, 5, 7],
[8, 3, 4],
[5, 7, 8]
]
);
// Returns
// [
// [5, 9, 10],
// [13, 10, 12],
// [14, 13, 15]
// ]
Returns
Addition of two matrices.
Matrix Subtraction
Subtracts second matrix from first and will return the result. The order of both matrices must be same for subtraction.
Usage
matrixSubtraction(
[
[2, 4, 3],
[5, 7, 8],
[9, 6, 7]
],
[
[3, 5, 7],
[8, 3, 4],
[5, 7, 8]
]
);
// Returns
// [
// [-1, -1, -4],
// [-3, 4, 4],
// [4, -1, -1]
// ]
Returns
Subtraction of two matrices.
Matrix Multiplication
Multiplies both matrices and will return the result. Number of columns in first matrix should be same as number of rows in second matrix.
Usage
matrixMultiplication(
[
[1, 2, 3],
[4, 5, 6]
],
[
[7, 8],
[9, 10],
[11, 12]
]
);
// Returns
// [
// [58, 64],
// [139, 154]
// ]
Returns
Multiplication of two matrices.
Scalar Multiplication
Multiply a scalar value with a given matrix and then returns a new matrix.
Usage
scalarMatrixMultiplication(
[
[1, 6],
[9, 3],
[6, 0]
],
-2);
// Multiplies -2 with a given matrix and returns
// [
// [-2, -12],
// [-18, -6],
// [-12, 0]
// ]
Arguments
matrix
: Matrix.scalar
: A sacalr value by which the given matrix is multiplied.
Returns
A new matrix with the scalar multiplication
Matrix Transpose
Convert matrix rows into columns and columns into rows. Returns a new matrix as a result.
Usage
matrixTranspose(
[
[0, 4],
[7, 0],
[3, 1]
]
);
// Returns
// [
// [0, 7, 3],
// [4, 0, 1]
// ]
Returns
A new transposed matrix.
Matrix Determinant
Returns the determinant of the given matrix.
Usage
matrixDeterminant(
[
[1, 2, 1],
[0, 3, 4],
[3, 1, 4],
]
);
// Returns 23
Returns
The determinant of the given matrix.
Matrix Adjoint
Returns the adjoint matrix of the given matrix.
Usage
matrixAdjoint(
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]
);
// Returns
// [
// [-3, 6, -3],
// [6, -12, 6],
// [-3, 6, -3]
// ]
Returns
The adjoint of the given matrix.
Matrix Inverse
Returns the invese of the given matrix. When matrix is multiplied with its reverse, it gives an identity matrix. If the matrix is singular, then it will throw an error.
Usage
matrixInverse(
[
[1, 2, 3],
[0, 1, 4],
[5, 6, 0],
]
);
// Returns
// [
// [-24, 18, 5],
// [20, -15, -4],
// [-5, 4, 1]
// ]
Returns
The inverse of the matrix. If matrix is not square matrix or is singular, it will throw an error.
Matrix Flatten
Flatten the multidimensional matrix into 1-D array. It calculates deeply nested arrays recursively for flattening.
Usage
matrixFlatten([0, 1, [2, [3, [4, 5]]]]); // Returns [0, 1, 2, 3, 4, 5]
Returns
The flattened 1-D array with all the elements.